亚博买球APP-手机版

亚博买球APP-手机版

2022年人工智能发展情况及值得关注的人工智能发展趋势

来源: 日期:2022/6/17 15:58:51 

人工智能是Artificial Intelligence,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

摄图网_400112486_banner_AI人工智能(企业商用)(1).jpg

人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。

实际应用

机器视觉,指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别,专家系统,自动规划,智能搜索,定理证明,博弈,自动程序设计,智能控制,机器人学,语言和图像理解,遗传编程等。

学科范畴

人工智能是一门边缘学科,属于自然科学和社会科学的交叉。

涉及学科

哲学和认知科学,数学,神经生理学,心理学,计算机科学,信息论,控制论,不定性论

研究范畴

自然语言处理,知识表现,智能搜索,推理,规划,机器学习,知识获取,组合调度问题,感知问题,模式识别,逻辑程序设计软计算,不精确和不确定的管理,人工生命,神经网络,复杂系统,遗传算法

 一、人工智能行业发展政策

近年来,人工智能对社会和经济影响日益凸显。我国自2015年来,多次将人工智能的发展和规划列入国家政策,逐步确立人工智能技术在战略发展中的重要性。各省市相应中央号召,推出相应的地方发展规划和政策;全国31省市中,已有19个省市发布了人工智能规划,其中有16个制定了具体的产业规模发展目标。

image.png

二、人工智能行业发展现状

1.市场规模

中国人工智能市场规模在2016年-2020年持续增长,市场规模从2016年的154亿元增长至2020年的1280亿元,年复合增长率达到69.79%。随着新基建产业愈发受到国家重视,人工智能产业未来将持续增长,预计2022年将达2729亿元。

 image.png

数据来源:灼识咨询、中商产业研究院整理

 2.市场结构

中国人工智能行业可按照应用领域分为四大类别:决策类人工智能、视觉人工智能、语音及语义人工智能和人工智能机器人。目前,视觉人工智能的占比最多,达43.4%。其次分别为决策类人工智能、语音及语义人工智能、人工智能机器人,占比分别为20.9%、18.2%、17.4%。

image.png

数据来源:灼识咨询、中商产业研究院整理

 3.投融资情况

2016年到2018年中国人工智能投融资情况呈现增长趋势。2019年开始,中国人工智能市场投融资事件数量开始下滑,整体市场开始冷静,投资金额有所上升。截止至2021年7月,投融资事件达506起,投融资金额达1839.92亿元。

 image.png

数据来源:中商产业研究院整理

 4.企业注册量

近两三年来,人工智能相关企业注册量飞速上升。企查查数据显示,2017年人工智能上升为国家战略后,相关企业年注册量首次突破1万家,2019年注册量已达到4.26万家。2020年,人工智能新科技的链接价值、赋能价值表现得更为突出,全年注册量增至17.10万家。

三、人工智能行业重点企业

1.京东方

京东方科技集团股份有限公司(BOE)创立于1993年4月,是全球领先的半导体显示技术、产品与服务提供商。基于在发展显示事业中积累的显示、传感、人工智能、大数据等技术基础,BOE(京东方)2014年启动DSH战略转型,由原有的端口器件事业向智慧物联事业和智慧医工事业延展。

2021年前三季度京东方实现营业收入1632.78亿元,同比增长72.05;实现归母净利润200.15亿元,同比增长708.36%。

2.科大讯飞

科大讯飞股份有限公司是一家专业从事语音及语言、自然语言理解、机器学习推理及自主学习等人工智能核心技术研究,人工智能产品研发和行业应用落地的国家级骨干软件企业。

2021年前三季度科大讯飞实现营收108.68亿元,同比增长49.2%;实现归母净利润7.29亿元,同比增长30.88%。

3.寒武纪

中科寒武纪科技股份有限公司创办于2016年,主营业务是应用于各类云服务器、边缘计算设备、终端设备中人工智能核心芯片的研发、设计和销售。公司的主要产品包括云端产品线、边缘产品线、处理器IP授权及软件。

2021年前三季度寒武纪营业收入实现2.22亿元,同比增长40.51%;归母净利润亏损6.29亿元,同比下降102.9%。

4.阿里巴巴

阿里AI(阿里灵杰)依托阿里领先的云基础设施、大数据和AI工程能力、场景算法技术和多年行业实践,一站式地为企业和开发者提供云原生的AI能力体系。帮助提升AI应用开发效率,促进AI在产业中规模化落地,激发业务价值。

5.百度AI

百度人工智能全面开放百度大脑领先能力,包括语音识别和文字识别等335项场景化能力、飞桨企业版EasyDL和BML、智能对话定制平台UNIT、AI学习与实训社区AI Studio、及实现算法与硬件深度整合的软硬一体产品项目等。目前,百度连续四年AI专利申请和授予量全国第一,百度AI开放平台成为中国领先的软硬一体AI大生产平台。而百度的移动生态,正是在这样的人工智能技术驱动下构建强大的。在人工智能的驱动下,由百家号、小程序、托管页构成的移动生态三大支柱业务增长稳进,构建起了完善的内容和服务一体化移动生态。

四、人工智能八大发展趋势

1、AI-on-5G

2022 年,工业 AI 和 AI-on-5G 物联网应用将会成为主流。

AI-on-5G 组合计算基础设施为传感器、计算平台和人工智能应用的整合提供了一种高性能、安全的链接结构,无论是在现场、场所还是云端中。具体包括:

· 汽车系统;

· 智能空间;

· 工业 4.0,如新的自动化和机器人系统。

我国5G发展取得领先优势,已累计建成5G基站超81.9万个,占全球比例约为70%;5G手机终端用户连接数达2.8亿,占全球比例超过80%;5G标准必要专利声明数量占比超过38%,2020年上半年以来上升近5个百分点,位列全球首位。工信部5G/6G专题会议会议表示,要持续推进5G快速健康发展。

5G是人工智能的加速器,同时5G也将为人工智能提供新动能。5G具有大连接、低延迟和高带宽三个核心特点,这些特点可以从不同侧面进一步加速人工智能技术的发展、应用、落地,促进整个供应链的智能升级。

2、生成式人工智能

生成式人工智能,或评估现有数据(如文本、音频或视觉文件)的算法,主要识别该数据的基本模式,然后复制该模式以生成类似的内容。这种算法正在逐步改进。随着模型的输入数据的变化和业务结果的变化,模型本身也需要调整。缺乏维护会导致人工智能算法最终丧失价值。

生成式人工智能包括多种技术:

(1) GAN生成对抗网络:生成对抗网络是两个神经网络:一个生成器和一个判别器,它们相互竞争,以找到两个网络之间的平衡。生成器网络负责生成与源数据相似的新数据或内容。判别器网络负责区分源数据和生成的数据,以便识别哪些数据更接近原始数据。

(2)Transformer:由论文《亚博买球APP》提出,现在是谷歌云TPU推荐的参考模型。论文相关的Tensorflow的代码可以从GitHub获取,其作为Tensor2Tensor包的一部分。哈佛的NLP团队也实现了一个基于PyTorch的版本,并注释该论文。像 GPT-3、LaMDA 和 Wu-Dao 这样的 Transformer 模拟了认知注意力,并对输入数据部分的重要性进行差异测量。它们被训练来理解语言或图像,学习一些分类任务,并从大量数据集中生成文本或图像。

(3)变分自编码器(Variational auto-encoder,VAE)是一类重要的生成模型(generative model),它于2013年由Diederik P.Kingma和Max Welling提出 

3、增强型劳动力或人类-人工智能混合工作

未来的工作更多的是在增强的环境中与人工智能配对。所有重复性的工作都是可能实现的,并且将是自动化的。

随着人工智能/机器学习工具的不断增加,你的工作效率也会提高

在每个行业中,都会涌现出人工智能驱动的智能工具,这些工具可以帮助该行业的个人高效工作。

4、IT 中的云计算和边缘管理

虽然边缘计算正迅速成为许多企业的必备工具,但部署仍处于早期阶段。云计算和边缘原生业务流程将在 IT 领域占据更多的主导地位,并在商业世界中更加无处不在。

一些人认为人工智能管理将成为 IT 部门的责任。为了应对与可管理性、安全性和规模有关的边缘计算挑战,IT 部门将转向云原生技术。例如,作为容器化微服务的平台,Kubernetes 已经成为大规模管理边缘人工智能应用的主要工具。

那些在云端上使用 Kubernetes 的 IT 部门可以利用他们的经验来构建自己的边缘云原生管理方案。预期将会有更多的第三方和相关的服务被采用。

5、人工智能在网络安全中的应用

在网络安全方面,人工智能的作用必须通过自动化来提高。有 69% 的机构相信,人工智能是处理网络攻击的必备条件,但是这一领域在 2022 到 2032 年期间都有升级的需求。

· 威胁检测;

· 战斗机器人;

· 端点保护;

· 违约风险保护;

· 服务停机保护。

6、更好更强的语言模型

虽然 OpenAI 的大规模生成性预训练 Transformer(GPT)模型的持续发展成为时尚的头条新闻,但 DeepMind、微软研究院以及其他公司的做法也值得关注。围绕着高度进化的大型人工智能语言模型,已经出现了几十家新的初创公司。

7、人工智能在元宇宙中的应用

元宇宙是一个术语,是指一个环境,更具体地说是一个数字环境,多个用户可以一起工作和游戏

新类型的应用程序、更智能的数字代理、深度造假人类(实际上是机器人),所有这些都在互联网的未来等待着亚博买球APP,似乎是元宇宙产品。

8、人工智能的民主化和可达性——低代码/无代码人工智能

今天,组织面临的主要挑战之一是缺乏能够研发出所需要的工具和算法的有经验的人工智能工程师。随着无代码或低代码解决方案的出现,这一挑战可以通过提供简单而直观的界面来解决,这些界面可以用来创建人工智能上的复杂系统。

随着亚博买球APP加快人工智能在商业中的应用,并升级人工智能流程,随着程序员与人工智能-人类系统的合作,亚博买球APP通过软件工程来制造产品的方法将会发生根本性的变化,并更容易被所有人接受,从而以更分散的方式分配其部分价值。